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TRANSPORT VIA MOMENTS OF QUANTUM DISTRIBUTION FUNCTIONS
H. L. GRUBIN and T.R. GOVINDAN

ABSTRACT

This report summarizes work performed under Contract DAAIL03-90-C-0005. The study
represents the first comprehensive effort to assess through (1) numerical simulations of the
equation of motion of the density matrix, and (2) approximate analytical procedures
involving an expansion of the Liouville potential, the multiplicative constant associated with
the quantum potential as used in quantum hydrodynamic transport. It was found that when
quantum effects are corrections’ to classical calculations, as in N+ N-N ¥ structures the
factor ’1/3’ is a satisfactory multiplicative constant. When the quantum potential is no
longer a correction, as in the case of double barrier diodes, the multiplicative constant is no
longer ’constant’ but is position dependent and less than unity.
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TRANSPORT VIA MOMENTS OF QUANTUM DISTRIBUTION FUNCTIONS
| H.L.GRUBIN and T.R. GOVINDAN

INTRODUCTION

The development of crystal growth techniques has made it possible to fabricate devices with
very small dimensions and sharp interfaces. Consequently, a variety of device concepts
based upon small dimensions with sharp interfaces has emerﬁle]d. These include such high
speed devices as the HEMT, HBT, quantum resonant tunneling devices, quantum wire
structures and quantum dots. The structure and operation of these devices is based upon a
perceived physical picture, often based upon results of quantum transport theory.

While all devices are governed and sometimes limited by quantum mechanical properties,
many devices do not require quantum mechanics for an understanding of their basic
operation, but do need quantum mechanics to provide key electrical properties. For
example, heterostructure bipolar transistors sustain low levels of current at low bias levels;
these currents are dominantly tunneling currents. Thermionic contributions to current
occur at high bias levels. Until recently, the drift and diffusion equations as well as the
moments of the Boltzmann transport equation did not include a description of tunneling
currents in any way other than through ad hoc arguments. Tunneling requires quantum
mechanical contributions.

The recent advance in the description of transport in devices with quantum contributions is
due to the discussion of Ancona and Iafrate (1989), who demonstrated that the quantum
corrections to multi-particle transport, first discussed by Wigner (1932), could be
incorporated in the drift and diffusion equations by adding to the classical potential a term
proportional to a quantum mechanical based potential:

(1) Q=-(n*/2m)[(p ViV (0 Y*

where the subscripts denote derivatives. Within the framework of the drift and diffusion
equation the ’Q’ term modifies the particle current as follows:

@ ) =nuk,TI(V+aQ)kpT + £nn)l

The proportionalitfy constant ’a’ was evaluated [Ancona and Iafrate (1989)] in the high
temperature limit from the equation of motion of the Wigner function and was found to be
equal to 1/3. The factor ’1/3’ 1s a serious issue, in that intuitively, as well as through
arguments associated with the single particle Schrodinger equation, it would be anticipated
that the constant ’a’ would be unity.

The problem addressed in the last paragraph, namely the origin of the factor a=1/3, as well
as the procedures under which quantum contributions to the balance equations are
obtained formed the basis of the study under Contract DAAL03-90-C-0005. This was



complemented by numerical simulations, using ’characteristic’ algorithms to examine the
extent to which the quantum corrected results are relevant. -

The means by which the problem is addressed is through an expansion of the equation of
motion of the Wigner function, and an expansion of the equation of motion of the density
matrix. The discussion of the Wigner function is in the form of a review, in that a
comprehensive treatment appears in Grubin and Kreskovsky (1989). The work on the
density matrix is new.

Q[fAN TUM CORRECTED EQUATIONS OF MOTION FOR
THE WIGNER FUNCTION AND THE DENSITY MATRIX

The Wigner Equation of Motion: The analysis under this study was restricted to one space

and one momentum direction and includes Fokker-Planck scattering. The equation of

I(notio)n of the Wigner function with Fokker-Planck dissipation as discussed by Stroscio
1986) is:

3) £+ (Pm)fy + (Uin)(12n5) o f +2dp’ oo [ = Q" X[V, DlexpliCo-p')x/a]
=2v[pflp +Dipp

where:

#) V(X)) =[V(x+x/2,t)-V(x-X"/2,t)]

The potential energy V(x,x’,t) is referred to below as the Liouville potential. As discussed
by Frensley (1990) the first term of the Fokker-Planck dissipation corresponds to a
frictional damping term, the second corresponds to thermal fluctuations. This will be
discussed in more detail below.

It is direct, but nontrivial to demonstrate that the integral in equation (3) reduces in the
classical case to V,fy,; thus equation (3) reduces to the Boltzmann transport equation with
Fokker-Planck dissipation:

) fy + (p/m)f-Vief, =27 [pflp + Dipp

To second order in #, the Wigner equation of motion, or equivalently, the quantum
corrected Boltzmann equation is:

(6) fy -+ (p/m)fy-Vigkp + (4 2/24) Voo, =27 [pflp + Dy,

The left hand side of equation (6) has been discussed in detail by Ancona and Iafrate
(1989) and Grubin and Kreskovsky (1989).

The Equation of Motion of the Density Matrix: This equation has been discussed in the
context of quantum structures by Frensley (1990). ile the equation of motion is a
fundamental equation, it is equivalent to and can be obtained directly from the Wigner
equation of motion. In the latter case multiply equation (3) by dp[exp[i2{ p/#]] an
integrate over p. For this integration p varies from -» to +, and it is assumed that the
Wigner function and all necessary derivatives with respect to momentum vanish as p=+~.
Identifying the density matrix through the Weyl transformation:

() p(x+¢ x-0) =[1/(2n# )] o [ dpfy,(p,X)exp[2ipS /7]



the transformed equaiion becomes the density matrix in the coordinate representation:

(8) pi+ (r2mi)pxe -(1/ir)[V(x+¢,1)-V(x {,)]p +2vC pp +[4DC 2 /82 ]p = 0
An expansion of the Liouville potential about the point x yields:
&) pi+ (r/2mi)pye -(1ir)[20 Vy + (€ *3) Vaxxlp +24C o +[4DE 2 /2 %]p =0

which is the transformed equivalent of equation (6).

at are lineas ields the tran ed equivale ;
ion. As will be seen the presence of the factor ’1/3’ in equation (9)
is the key ingredient in obtaining the multiplicative factor in the quantum potential. It is
emphasized that quantum corrections to O(# ?) are contained in the term [(¢ 2/3) Vo ]p.

Equations (6) and (9) are the relevant equations for the analytical part of this study.
Equations (3) and (8) are, however, the ones to deai with in a fundamental approach to
quanium transport. Results with equation (8) are introduced later into the discussion.
THE APPROXIMATE EQUILIBRIUM DISTRIBUTION FUNCTION

In the absence of dissipation the approximate Wigner distribution function to second order
in # is Wigner (1932):

(10) fw=exp-g[p?2m+UX){1-(\ * 8/4)[(Vxx-B Vx?*13)-8(p* /3m) Vi 1}

Where 2 ? = #28/2m, and g = 1/(k, T). The equivalent approximate density matrix solution
to order O(#?) is:

(11) p(x+¢ x-C)= Nexp-[{ 22 +BV{1-(A28/6)(1+§ 2/2 2 )V +1 282V, 2/12}
where,

(12) N = 2(m/2npnr2)/2,

Note: First, the classical density matrix equivalent to the Boltzmann distribution is:

(13) p(x+¢ x-)=Nexp-[{ 2/A% +BV];

Second, the brackets {+ » » } contains quantum corrections to the density matrix. Third, the

approximate density matrix is real, indicating that the current is zero. Fourth, the diagonal
components of the approximate density matrix, which are obtained for { =0, are equal to:

(14) p(xx) =N[exp-8V][1-(x * /6)(Vxx-B Vx*/2)]

This result also emerges from an integration of the Wigner function over all values of
momentum (Ancona and Iafrate (1989).

The significance of equation (14) for device applications is that it describes the way in

which quantum corrections alter the built-in potential. For example, when it is recalled that,
classically, the potential and carrier density are related through the expression:

(15) p =Nexp-gV




and therefore that gV, =-p,/p; then through incorporation of the quantum potential
(equation (1)), it is straightforward to show that Q= (#2/4m)B[V -8V« ?/2}, and that:

(16) p =Nlexp-8V][1-(6Q/3)]

Several points are clear: First there may be an alteration of the built-in potential arising
from gradients in the carrier density; second, the factor of °3’ that appears in equation (16)
is seepr to be a consequence of the truncation of the Taylor expansion of the potential in
both the density matrix and Wigner equations.

antum Corr. Energy Density Matrix: There is a characteristic energy associated with
the equilibrium system obtained from both the Wigner function and the density matrix. To
obtain it from the density matrix we define an energy density matrix through a Weyl-like
transformation:

17 E(x+¢ x-0) =[1/(2n4)] [ * dp(p* /2m)fy,(p,X)exp{2ip( /#]

Note: for ¢ =0, the above reduces to mean kinetic energy of the system. It is direct to
demonstrate that

(18) E(x+{x-{)=-(#2/8m)p ¢

The expectation value of the energy is the diagonal component of the energy density matrix,
and yields:

(19 B0 =[okpT2A[1-02/6)(4np)]
= [kpT72+wglp

The term w, was first introduced by Wollard et al (1990). Equation (19) is valid only to
second ordet in . Thus the density multiplying the term *(£np )y’ is strictly only the
classical density. The significance of equation (11) is that there is a change in energy due to
the gradients of carrier density, as first predicted by Wigner (1932).

THE APPROXIMATE NONEQUILIBRIUM DENSITY MATRIX

Classical moment balance equations are often obtained through representing the
nonequilibrium state by a displaced Maxwellian, exp-[8{(p-pq)’/2m + V}] where, e.g., pg,
the density and a particle temperature, are to be determined. The Weyl transformation
indg:.a;.tes that a displaced Maxwellian yields a density matrix with the following
modification:

(20) p(X+¢ x-C yoop (x + ¢ x-C Yexp-[2ipg¢ /4]

Thus the classical density matrix corresponding to the displaced Maxwellian is (21)
p(x+¢ x-¢)=Nexp-[(2/A% +8V +2ipy( /n]

Note that the density matrix contains an imaginary part, as required for a finite current.
The nonequilibrium quantum-corrected density matrix is given by a modification of
equation (11):




(22) p(x+¢x-C)=Nexp-[¢ /A2 + 8V +2ipy( /h]
{1-(028/6)(1 +¢ 2N 2 )V +1 282V, 2/12}
Quantum Corrected Current (velocity flux) Density Matrix: Since the density matrix

contains imaginary components we are interested in the expectation values of the current
flux density. To obtain this we define a current density matrix as:

(23) J(x+ ¢ x-0) =[1/(2n#)]o [ dp(p/m)fyy(p;X)exp[2ip¢ /7]

Note: for { =0, the above reduces to mean velocity flux of the system. It is direct to show
that:

@4) e+ xt)=(r/2mi)pg

The expectation value of current is the diagonal component:

(25) j(xx) =(pg/m)p

The quantum corrections to the current are obtained from the quantum corrections to the
density. Note that the form of the current density along the diagonal is the same for
classical transport as it is for quantum corrected transport. Thus of relevance are the

equations defining pq, density and temperature. To establish these we reconsider the
equation of motion of the density matrix taking successive derivatives.

THE APPROXIMATE NONEQUILIBRIUM BALANCE EQUATIONS AS
OBTAINED FROM THE EQUATION OF MOTION OF THE DENSITY MATRIX
Particle Balance: The first balance equation is obtained by rewriting the equation of inotion

of the density matrix and then dealing only with the diagonal component. Thus there is
reduced content. Using the definition of velocity flux, equation (9I)xl))ecomes:

26) P (x+C X+ [k € 30 Yy (ViR )26 Vig+ € 3 Vg Blo (x4 € x-C )
2y [p(x+¢ x5 g +[4D¢ ?/a Jp(x-+ x0) =0

The first balance equation is obtained from the diagonal component of equatiorn (24):

(27) [p]t+[pPg/m]x =0

which is the equation of continuity.

Momentum Balance: To determine the next governing equation to second order in 2 we
take derivatives of equation (2) with respect to ’¢’, multiply by #/2i, and obtain:

(28) [P+ x-0))p +2[E(x + ¢ x-0 )] + (12)[2V + € 2 Vo (x + ¢ %)
-(Vin)[2¢ Vi + € 2 Voo 3]p(x + ¢ x-€ )
+2yp(x+§ x-¢ )-i[4D¢ /r]p (x + ¢ x-()
-iny§ [p(x+¢x-0)]e ¢ +[4D¢ 2 /52 )[p(x +¢ x-C)] =0




where p(x + ¢ x-¢ ) =j(x + ¢ x-{ )m. The diagonal component of energy under finite current
conditions is required for the second bzlance equation. It is:

(29)  E(ox) =[pg?/2m+(kpT2)(1-(x 2/6)(enp )l

With the diagonal components of energy given by equation (29), ident;f?'ing a relaxation

time 7 =2/y, the second balance equation is obtained from the diagonal components of
equation (29):

(30) (ppd)t +(ppg®/m)yx + (pkT)x + p(Q/3)x+ o Vy +pp/r =0

where we recognize that [(#np)p ]y =-4mpQy/n 2. The above equation differs from its
classical analog through the presence of the quantum potential. The form of the scattering
term in the above equation also confirms Frensley’s (1990) statement of the first part of the
Fokker-Planck scattering as a frictional term.

Energy Balance: If we regard the quantum corrected density matrix as a distribution
function with three undetermined parameters, the third being the temperature, then a third
equation is needed to complete the system of equations. This third equation is obtained in
a manner similar that of equation (28), namely by taking a second derivative of the density
matrix equation of motion, with respect to {. We are only interested in the diagonal
components of this equation, which with the energy given by equation (18), are:

(1) E; +(1/(2m?)P y +jVy = (Epcon

where P® is the diagonal component of the third moment of the off-diagonal element:
(32)  [M(2nn)) f=dp(p® Y (PX)eEXPI2iDE /1) = (/20)* o ¢ ¢

Using equation (21) for the density matrix, equation (32) becomes:

(33) Ei + {(pg/m)[E + (o/8)(1-[x 2/6])(£ np )yo)] }x + (ppg/m)Uy +2E/7 + 8Dp =0

where the energy in equation (33) is given by equation (29) (Note: the equilibrium value of
P3 is zero). The above equation can be rearranged to read:

(34) E{ + (pgE/m)x + (pgokpT/m)y - (ppg/m)[Q/3 + Vi
-p (A 2kp T/6)[(£np)x](Pg/m)y + 2E/7-8Dp =0

If we assume equilibrium values for D, namely D = mk}, T/7, equation (34) becomes:

(35) E +(pgE/m)x + (pgrkpT/m)y + (ppg/m)[Q/3 + V]
-0 (x *kp T/6)[(£ 1)) (pg/m)x + (%7 [E-kp T/2]p =0

And the second part of the Fokker-Planck dissipation involves a relaxation to a non-zero
thermal energy.

The equation of motion of the density matrix involves two NxN matrices (real and
imaginary parts) where N represents the numbers of grid points along a linear dimension.
The density matrix equation is the equation of interest. An approximate representation of
the equation of motion of the density matrix is provided by the first three moments of the
density matrix. These moments include the continuity equation, momentum balance, and




energy balance.

As in all moment eq.ation representations, the form of the moment equation depends upon
the primary equation, in this case equation (9), and the generic form of the distribution
functinn, in this case equation (22). The most dramatic consequence of the approach, as
expressed in the momentum balance equations, is the appearance of the quantum potential.
The quantum potential with its associated factor of 1/3’, the latter arising solely as a
consequence of the expansion of the Liouville potential, permits a quantum mechanical
"correction” description of classical transport and allows tunneling to be incorporated into
the latter. This result was also the initial conclusion of Ancona and Iafrate (1990).

It is important to reiterate that one key result of the present study is that through the
expansion of Liouville potential in the equation of motion of the density matrix the
quantum corrections are the same as those obtained from the equation of motion of the
Wigner distribution function. The origin of the factor of ’1/3’ is due solely to the expansion
of the Liouville potential, and is not limited the high temperature limit discussed by Ancona
and Iafrate (1989).

The energy balance equation is also driven by the quantum potential, but additionally there
appears to be a contribution that may behave as a quantum correction to the pressure. This
is the terms p (X 2kp T/6)[(£np )yx].

In addition to the quantum mechanical contributions, the moment equations include an
incorporation of Foxker-Planck dissipation in the moment formulation, and twenty of the
relative contribution of each of the two terms. A more general treatment is provided by
Stroscio (1986).

The next question concerns the significance of the quantum potential.
SELF CONSISTENT NUMERICAL SOLUTIONS

This section contains a discussion of the interpretation of the distribution of charge within
the quantum well and quantum barrier device and the values obtained thereof. The
calculations involve solutions to the density matrix coupled to Poisson’s equation:

36)  s/oxle (08 V/ox]=-e2[p(xx)-p o)}

Classical N-EN:=N-t Structures: Since most resonant tunnel structures are designed with
the heterostructures placed within the interior of a low doped region, the first
self-consistent problem discussed involves transport through a classic Nt N-N + structure.
The structure is 1200A long with a nominal doping of 10? 2 /cm3 and a centrally placed
2504, 10! 8 /cm? region. ’l%m variation in background doping was over one grid point or 4A.

There are a variety of questions to be addressed here; among them is the issue of whether
there are any quantum contributions associated with an ostensibly classical structure. It is
relevant, in this matter to recall one of the conclusions of a paper by lafrate, Grubin and
Ferry (1981), where it was argued that quantum corrections are imgortant if the density
sustained an approximate Gaussian distribution with a width at half maximum of
approximately fFOA of less.

The equilibrium charge density and potential distribution as obtained from the complete
equation of motion of the density matrix, equation (8) without dissipation, for the

N+ N-N* structure are shown in figures (1a) and (1b), respectively. The results appear
classical. We also show the diagonafgomponent of energy density of the system, figure (1c),

-7-




ar computed from equation (18) and the quantum potential, figure (1d), as computed from
equation (1). For completeness we also show the two dimensional plot of the density matrix
in figure 2.

Figures (1a) and (1b) display charge density and self-consistent potential distributions that
are ostensibly classical. ©'here is an increase in potential across the N- region, which
accompanies a decrease in charge density across this same region. From the point of view
of quantum transport, we are also dealing with a tunneling problem, particularly with those
carriers whose energy is below the potential barrier, which in this case has a height of
approximately 45 mev. We note that the mean eneryy of the entering carriers is ky, T/2 <45
meyv.

Quantum transport permits tanneling, thereby increasing the numbers ot particles in the N-
region over the ciassical value. Continuity of the wavefunction and its derivative through
the barrier re(%ion (at the metallurgical interface the energy density is approximately

ki Tp/2, and decreases into the N region) prevents the density from approaching it’s
classical value, and instead assumes a smaller value. This resu:t which is a consequence of
wave function continuity has been refe ted to by others as quantum "repulsion” (Kluksdahl
et al (1989)). The "increased" value o1 density in the barrier region and "decreased” value of
density in the classically accessible region arc represented by equation (16) if the quantum
is negative within the barrier region and positive within the region of the ’turning points’ at
the bcundary of the metallurgical junction. The quantum potential as evaluated from
equation (1) and depicted in figure 1d displays these qualitative features. Note that the
quaniuia potential at the center of the structure is approximately 25% of the energy at the
boundaries. For a very wide N- region the density at the center region of the structure will
be relatively constant and Qs0, at the center.

For the calculation of figures 1 and 2, the density, potential and quantum potential are
respectively

(37) pcal(v=0) = 1.847x 10! 7 /cm?
(38a) Veal(x=0) = 44.725 mev
(38b) Qcal(x=0) = -3.0228 me

Calculations p (x =0) from equation (16) with the potential energy and quantum potential
given by equation 38 yield

(39) qu.(38)(x =0) = 1.832x10! 7 /cm?3

The energy density at the center of the structure as computed from the density matrix is
(40) Eca1(x=0) = 2.3015 mev/cm?

The energy as computed from equation (19) is

(41) EEq.(l9)(x =0) = 2.286 mev/cm?

The hydrodynamic moment equations apEear in the case of the simple Nt N-N * to yield
the same result as the density matrix for the charge distribution. :




Double Barrier Diodes: The situation for double barrier diodes is quantitatively <ifferent
than that of the N ¥ N-N * structure. Here the quantum mechanics is not a correciion to
the classical solution. Howeves, as ir the N T N-N * structure, it is expected that outside of
the double barrier that continuity of the wave function would agair. yield a density below
that of the classical value. Thus the quantum potential would be positive in this region.
Within the barrier quantum mechanical tunneling permits a greater number of carriers than
those associated with tl -~ classical distribution; thus the quantum potential is negative.
Within the quantom well continuity of the wavefunction results in a charge distribution that
is below that obtained classically; and Q is negative. The variation of density, potential,
energy and quantum potential are displayed in figures 3 and 4.

Figure 3a displays the density distribution which shows a small residual change in the
vantum well and an insiguiticant amount of charge within the barriers. Potential energy is
isplayed in figure 3b, where we note that the low density in the quantum well region

contributes to an elevation of the potential relative to the end ;t)lomts. The mean energy

density is shown in figure 3¢, and displays negligible values at the center of the structure.

The quantum petential is displayed in figure 3d. For the calculations of figure 3, the density

potential energy and quantum potential are respectively

(42) pcal(x=0) = 6.156 x 10* ¢ /cm?3

(43a) Veal (x=0) = 15479 mev

(43b) Qcqal (x=0) = 92.149 mev

Calculating p (x =0) from equation (16) within the potential energy and quantum potential
given by equation (43) requires that the quantum ; Jstential be multiplied by a constant
other than 1/3. For the present situation the constant is closer to 2/3. This difference is
value is not surprising in light of the fact that within the quantum well the value of the
quantum potential is not longer a correction. Indeed Q is approximat:ly equal to the
quasi-bound state energy.

The value of p(x=0) from equation 16, with Q/3 replaced by 2Q/3 is:

(44) p(Eq.(_;g)(x =0) = 5.043x 10! ¢/cm?

We note that the density upstream of the emitter is satisfactorily represented by equation
(16). It would appear that our results are consistent with the discussion of Ancona and
Iafrate (1989) where the quantum potential appearing in the moment equations should be
(45) Phenomenological quantum potential: aQ(x)

where a is a position depcndent positive constant less than unity.

The energy calculated from equation (18) with the center of the quantum well is

(46) Eq,1(x=0) = 2.864 mev/cm?

The energy calculated from equation (19) with Q/3 replaced by 2Q/3 is:

47) EEq.( 19)(x=0) = 2.684 mev/cm?

The low value is present, even though the guantum potential tends to push up the mean

carrier energy, and arises from the reduced charge in the quantum well.

9-




CONCLUSION

This study represents the first comprehensive effort to assess through (1) numerical
simulations of the equation of motion of the density matrix, and (2) approximate analytical
procedures involving an expansion of the Liouville potential, the multiplicative constants
associated with the quantum potential, as used in quantum hydrodynamic transport. It was
found that when quantum effects are *corrections’ to classical calculations, asin Nt N-N+
structures the factor *1/3’ is a satisfactory multiplicative constant. When the quantum
potential is no longer a correction, as in the case of double barrier diodes, the multiplicative
constant is no longer ’constant’ but is position dependent and less than unity. Additional
work is required to narrow the range of variation of this constant before eftectively
incorporating the quantum potential in detailed quantum hydrodynamic simulations of
ultrasmall devices.
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